Data Hiding Method With Modified Interpolation and Key Based Sudoku

> Dr. Shailja Shukla Prof. and HOD of CSE Jabalpur Engineering College, Jabalpur (M.P.) shailja270@gmail.com

Dr. Veerendra Kumar Director of Tech. Education Bhopal (M.P.)
prof.veerendra.kumar@gmail. com

Dr, Vandana Roy
Asst. Prof.
HCET, Jabalpur (M.P.)
vandana.roy20@gmail.com

Ragya Kori
Student of M.E. control system, Jabalpur Engineering College, Jabalpur (M.P.)
ragyakori@gmail.com

Abstract

This work intends to give an overview of image steganography, its uses \& techniques. Paper work is an implementation of Image Steganography of same plaintext and the implementation of a system that designs a unique Sudoku for Sudoku based data hiding. Higher security is the main concern of this paper. The system is based on a hybrid algorithm that applies the technique of Sudoku generation and steganography to offer different security features to images transmitted between entities in internet. Based on the proposed algorithm, the authenticity and integrity of the transmitted images can be verified either in the spatial domain or in the encrypted domain or in both domains. The work is implemented on MATLAB design and simulation tool. Paper work uses modified Sudoku based data protection and PSNR is very high in present paper work.

Keywords: Peak Signal to Noise Ratio (PSNR), Mean Square Error (MSE), Bit Per Pixel (BPP), Sudoku

I-INTRODUCTION

The paper work is the Implementation of steganography tools for hiding more data or information which may be text or another image files. Transform techniques have been used for identifying appropriate data. Available methods in area of steganography have been presented:-

1. Initially LSB substitution in image was popular [15],[16]
2. Different schemes for LBS substitution developed [14]
3. Key based LSB substitution developed ${ }^{\text {[13] }}$
4. Multiple layer for steganography developed like steganography with steganography ${ }^{[12]}$
5. DCT based image analysis for finding out area where data can be hidden appropriately ${ }^{[3]}$
6. DWT based image analysis for finding out area where data can be hidden appropriately \& to find better method than DCT based image analysis ${ }^{[7][6]}$
7. Sudoku based data hiding method in cover image [1],[2]

II-METHODOLOGY

Proposed design resolves the problems of available works with significant modification done in interpolation method and in Sudoku generation method. 8 digit public and private key have been used in the proposed work, and association of both the keys develops one 8 digit Sudoku Key. Proposed work is a new design which uses Sudoku, developed with 8 digits Sudoku Key provided by user. This method develops a unique Sudoku solution for each different key, hence the concept of unique Sudoku based on combination of public and private key makes proposed method robust against external intrusion. Proposed work is also using an interpolation and new pixel generation method with the help of four neighboring pixels instead of two pixels as was used by Chin-Chen Chang et al [1], four pixels interpolation develops more accurate new pixel than two pixels interpolation. The remaining processes of hiding are similar as used by ChinChen Chang et al [1].

2.1 DATA HIDING METHOD ADOPTED:

Fig. 1 presents the flow diagram of the proposed work, explained in following steps-
Step 1: Input an 8 digit decimal public key, the key can be any value of 8 digit and must be pass when data hiding required.
Step 2: perform logical XOR between 8 digit public and private key which was already in the steganography module. The output key is our new Sudoku Key.

Step 3: develop a unique t 1 to t 9 digits out of 8 digits Sudoku key, t1 to t9 can be any digits between 1 to 9 but all t1 to t9 must be different from each other.
Step 4: Assign the values of t 1 to t 9 into a fixed bottom up approach Sudoku problem. Total 23 unknown values of Sudoku problem has been assigned using t1 to t9 digits.
Step 5: Solve the bottom up Sudoku problem by using Sudoku Rules, proposed method uses the method of solving Sudoku by Ahmed Abdulkarim Almuhrij et al [27] from University of Manchester.

Figure 1 Data hiding Flow diagram
Step 6: convert the base-9 Sudoku into base-8 Sudoku, because we can hide digits 0-8 only.

Step 7: develop a $255 x 255$ Sudoku matrix with help of base-8 developed Sudoku, the size of 255×255 is fixed because any pixel of image cannot be greater than 255.
Step 8: input the cover image and isolate it in $2 x 2$ blocks
Step 9: perform interpolation on each 2×2 blocks of cover image and develop new $3 x 3$ interpolated blocks, total 4 pixels was available in $2 x 2$ block and total 9 pixels have been developed in $3 x 3$ block, hence we have 5 new pixels. These 5 new pixels can be modified according to the data which is to be hidden in the cover image.
The role of interpolation is that original pixels (4 pixel of 2×2 block) must not change and new 5 interpolated pixels can be modified with small amount, hence overall image modification is less as required in steganography.
Step 10: input the data which may be character or any number, first convert it into its ASCII values then develop a single string of decimal digits.
Step 11: convert the number into base-9
Step 12: start hiding the data in cover image with the help of $255 x 255$ Sudoku matrix. Actually the original digit is not hidden in the cover image, the digits of data simply modify the interpolated pixels of cover image. Each $2 x 2$ block of interpolated image can hide 3 digits.

2.2 PROPOSED ALGORITHM FOR DATA

HIDING : Input a 8 digit public key, let its 8 digits are K1, K2....K8
KEY=K1K2K3K4K5K6K7K8
Shift row for making Key complex as also done in AES
NK=K2K3K4K5K6K7K8K1
Perform logical XOR of 'NK' with private key 'PK' for public Key encryption
MK=NK xor PK
Now develop sub-keys from MK
MK1=99999999-MK
MK2=88888888-MK
МК3=77777777-MK
MK4=66666666-MK
MK5=55555555-MK
MK6=44444444-MK
MK7=33333333-MK
MK8=22222222-MK
On the other hand Let Sud is a 9x9 matrix where the positions t1,t2....t9 are fixed

Sud $=$| $t 1$ | $U N$ | $U N$ | $U N$ | $U N$ | $t 2$ | $U N$ | $t 3$ | $U N$ |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| $U N$ | $t 4$ | $U N$ | $U N$ | $t 5$ | $U N$ | $U N$ | $U N$ | $t 6$ |
| $U N$ | $U N$ | $t 7$ | $t 8$ | $U N$ | $U N$ | $t 9$ | $U N$ | $U N$ |
| $U N$ | $U N$ | $t 1$ | $t 2$ | $U N$ | $U N$ | $t 3$ | $U N$ | $U N$ |
| $U N$ | $t 5$ | $U N$ | $U N$ | $t 4$ | $U N$ | $U N$ | $U N$ | $t 7$ |
| $t 6$ | $U N$ | $U N$ | $U N$ | $U N$ | $t 8$ | $U N$ | $U N$ | $U N$ |
| $t 9$ | $U N$ | $t 1$ | $U N$ |
| $U N$ | $t 2$ | $U N$ | $t 3$ |
| $U N$ | $U N$ | $t 4$ | $U N$ | $U N$ | $U N$ | $t 5$ | $U N$ | $U N$ |

Following method is used to generate $\mathrm{t} 1, \mathrm{t} 2 \ldots . . \mathrm{t} 9$, the values of t 1 , t2t9 can never be same.
Initially $\mathrm{i}=1$ and $\mathrm{j}=1$ and $\mathrm{p}=1$
'i' can range maximum from 1 to 23
' j ' can range maximum from 1 to 9
' p ' can range maximum from 1 to 8
For i
$=1: 23$
For j
$=1: 8$
if $\left(M K(j)_{d p} \neq\left(t_{1: i-1}, t_{1: i-2}, t_{1: i-3} \ldots . . t_{1}\right)\right.$
$t_{i}=M K(j)_{d p}$
elseif $\left(M K(j)_{d(p+1)} \neq\left(t_{1: i-1}, t_{1: i-2}, t_{1: i-3} \ldots . . t_{1}\right)\right.$
$t_{i}=M K(j)_{d(p+1)}$
elseif $\left(M K(j)_{d(p+2)} \neq\left(t_{1: i-1}, t_{1: i-2}, t_{1: i-3} \ldots . . t_{1}\right)\right.$
$t_{i}=M K(j)_{d(p+2)}$
else
$t_{i}=M K(j)_{d(p+7)}$
end
end

Ones the values of t1 to t9 computed, based on public key provided by user and private key by the service provider, a unique Sudoku need to be designed according to computed values.
The remaining values of UN in Sudoku matrix 'sud' will be computed using Sudoku solver according to the Sudoku rules :
> Any row cannot have repeated numbers 1 to 9
$>$ Any column cannot have repeated numbers 1 to 9
$>$ Any 3x3 square (corning and central)matrix numbers cannot have repeated numbers 1 to 9
A MATLAB define function names SudokuSolver.m can solve this Sudoku and it can compute all the unknown values using above rules, the complete Sudoku is represented below where t1t9 are initially computed with the help of the KEY and U1-U59 are computed with the help of SodokuSolver.m and Sudoku rules.
This Sudoku is completely defined by the key, as the key changes the complete Sudoku will also change,
and this method will provide a good avalanche which is small change in input KEY cause major changes in output Sudoku, hence the system can be considered a chaotic system.

Sud $1=$| $t 1$ | $U 1$ | $U 2$ | $U 3$ | $U 4$ | $t 2$ | $U 5$ | $t 3$ | $U 6$ |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| $U 7$ | $t 4$ | $U 8$ | $U 9$ | $t 5$ | $U 10$ | $U 11$ | $U 12$ | $t 6$ |
| $U 13$ | $U 14$ | $t 7$ | $t 8$ | $U 15$ | $U 16$ | $t 9$ | $U 17$ | $U 18$ |
| $U 19$ | $U 20$ | $t 10$ | $t 11$ | $U 21$ | $U 22$ | $t 12$ | $U 23$ | $U 24$ |
| $U 25$ | $t 13$ | $U 26$ | $U 27$ | $t 14$ | $U 28$ | $U 29$ | $U 30$ | $t 15$ |
| $t 16$ | $U 31$ | $U 32$ | $U 33$ | $U 34$ | $t 17$ | $U 35$ | $U 36$ | $U 37$ |
| $t 18$ | $U 38$ | $U 39$ | $U 40$ | $U 41$ | $U 42$ | $U 43$ | $t 19$ | $U 44$ |
| $U 45$ | $t 20$ | $U 46$ | $U 47$ | $U 48$ | $U 49$ | $U 50$ | $U 51$ | $t 21$ |
| $U 52$ | $U 53$ | $t 22$ | $U 54$ | $U 55$ | $U 56$ | $t 23$ | $U 57$ | $U 58$ |

'SudM' contains digits from 0 to 8 only and can be developed as: SudM=Sud1 -1
Now make copies of SudM such that a matrix of 255×255 is generated.

SudM SudMSudM			
SudM	SudM	udM
..	-
..	\ldots
..
SudM	SudM		udM

Figure 2: 255x255 Sudoku matrix
Input the cover image and convert it into matrix form which shows the pixels of the image. Let one part of the cover image as below

$i m g=$| $r 1_{1}$ | $r 1_{2}$ | $r 1_{3}$ |
| :--- | :--- | :--- |
| $r 2_{1}$ | $r 2_{2}$ | $r 2_{3}$ |
| $r 3_{1}$ | $r 3_{2}$ | $r 3_{3}$ |

Perform interpolation using the formula below

$$
\begin{aligned}
& \boldsymbol{r} x_{n i}= \\
& {\left[r x_{i}+\left(\frac{r x_{i}+r x_{i+1}}{2}\right)\right] / 2 \quad \text { where } x \text { is constant }} \\
& \boldsymbol{c} x_{n i}= \\
& {\left[r i_{x}+\left(\frac{r i_{x}+r(i+1)_{x}}{2}\right)\right] / 2 \quad \text { where } x \text { is constant }} \\
& r c x_{n i}= \\
& \left\{\left[r x_{n i}+\left(\frac{r x_{n i}+r x_{n(t+1)}}{2}\right)\right] / 2+\left[c x_{n i}+\left(\frac{c x_{n i}+c x_{n(t+1)}}{2}\right)\right] / 2\right\} /
\end{aligned}
$$

where x is constant

$$
i m g 1=\begin{array}{cccccc}
r 1_{1} & r 1_{n 1} & r 1_{2} & r 1_{n 2} & r 1_{3} & r 1_{n 3} \\
c 1_{n 1} & r c 1_{n 1} & c 1_{n 2} & r c 1_{n 2} & c 1_{n 3} & r 1_{n 3} \\
r 2_{1} & r 2_{n 1} & r 2_{2} & r 2_{n 2} & r 2_{3} & r 2_{n 3} \\
c 2_{n 1} & r c 2_{n 1} & c 2_{n 2} & r c 2_{n 2} & c 2_{n 3} & r c 2_{n 3} \\
r 3_{1} & r 3_{n 1} & r 3_{2} & r 3_{n 2} & r 3_{3} & r 3_{n 3} \\
c 3_{n 1} & r c 3_{n 1} & c 3_{n 2} & r c 3_{n 2} & c 3_{n 3} & r c 3_{n 3}
\end{array}
$$

Input data ‘D' and convert it into ASCII format and then to base-9 formats
$\mathrm{ND}=(\mathrm{D})_{9}$

Figure 3 selection of row according to pixel in 255x255 Sudoku matrix

Now from the interpolated cover image 'img1' select $\left(r 1_{1}, r 1_{n 1}\right)$ position from Sudoku, obtained in step 8 and then consider 4 pixel ahead and 4 pixels back from the position $\left(r 1_{1}, r 1_{n 1}\right)$.
If the nine digits of Sudoku are [t14 U28 U29 U30 t15 U25 t13 U26 U27], search for the first digit of new data ' $\mathrm{ND}(1)$ ' and detect its position ($r 1_{1}, Y_{n 1}$)

Replace the searched new position ($r 1_{1}, Y_{n 1}$) with pixel of $\left(r 1_{1}, r 1_{n 1}\right)$ of interpolated image, repeat this process until all the digits of the new data (ND) are not replaced,

The whole idea is that we are not making any changes in the original information of the cover image, the pixel values of interpolated pixel gets modified which was generated using interpolation formula, and making slight change in this pixel does not affect quality on the image significantly.

2.3 PROPOSED METHOD FOR DATA EXTRACTION

Step 1: Input an 8 digit decimal public key, the key can be any value of 8 digit and must be pass when data extraction required and it must be same as entered at the time of data hiding.
Step 2: Perform logical XOR between 8 digit public and private key which is already defined in the steganography module. The output key is known as Sudoku Key.
Step 3: Develop a unique t1 to t9 digits out of 8 digits Sudoku key, the t 1 to t 9 can be any value between 1 to 9 but all must be different from each other.
Step 4: Assign the values of t 1 to t 9 into a fixed bottom up approach Sudoku problem. Total 23 unknown values of Sudoku problem must be assigned using t1 to t 9 digits.
Step 5: Solve the bottom up Sudoku problem with using Sudoku Rules, proposed method uses the method of solving Sudoku by Ahmed Abdulkarim Almuhrij et al [27] from University of Manchester.
Step 6: Convert the base-9 Sudoku into base-8 Sudoku because we can hide digits 0-8 only.
Step 7: Develop a $255 x 255$ Sudoku matrix with the help of base-8 developed Sudoku, the size of 255×255 is fixed because any pixel of image cannot be greater than 255 .
Step 8: Input the cipher image and isolate its $2 x 2$ blocks.

Figure 4 Data Extraction flow diagram
Step 9: With the help of 255×255 Sudoku matrix generate 3 decimal digits from each $2 x 2$ block. The digits must be put as a sting of data.
Step 10: Convert the number into base-10.
Step 11: Develop ASCII from the digit string and then convert ASCII into Characters.

2.4 ALGORITHM FOR DATA EXTRACTION

The generation of 255×255 Sudoku is same as was in data hiding.
Input the cover image and convert into matrix form which shows the pixels of the image. Let one part of the cover image as below:-

Isolate $2 x 2$ block, let say:

Now from the cipher image 'img1' select (P11, P12) , (P11, P21) and (P11, P22) position and search corresponding values in 255x255 Sudoku, the values in Sudoku will be the data in base-9 form.

Collect values from Sudoku according to positions (P11, P12) , (P11, P21) and (P11, P22) and develop a string of base-9 data values.
Convert base-9 data string into decimal data string and decimal data string into ASCII and then convert ASCII into alphanumeric characters, these characters will be the final extracted DATA.

III-RESULTS

MSE, SNR and BPP are the results parameters, these parameters will help in the observation of results and comparison of proposed work with others.

$$
\begin{gathered}
M S E=\frac{\left\{\sum_{i=1}^{r w} \sum_{j=1}^{c l}\left[P_{\text {cipher }}(i, j)-P_{\text {cover }}(i, j)\right]\right\}^{2}}{r w * c l} \\
P S N R=10 * \log _{10} * \frac{256^{2}}{M S E} \\
B P P=\frac{8 * B d}{B i}
\end{gathered}
$$

$\mathrm{P}_{\text {cipher }}$ is the pixel of cipher image
$\mathrm{P}_{\text {cover }}$ is pixel of cover image
Rw is number of row in cipher image
Cl is the number of column in cipher image
Bi number of bits in the cipher image
Bd number of bits in data

BPP: Bit Per Pixel is the number of bits that can be hidden inside a pixel, The capacity of data which can be hidden inside the proposed work can be explained with a test image let say image of 'Lena' with $512 x 512$ pixels
$512 \times 512=2,62,144$ pixels
Total 256x256 number of 2x2(4 pixel block) can be developed with 512x512 image
$256 \times 256 \times 2 \times 2=2,62,144$ pixels
And after interpolation 2 x 2 block convert into 3 x 3 block means total
$256 x 256 x 3 x 3=5,89,824$ pixels
And as it's a color image with 3 frames total pixels can be
256x256x3x3x3= 17,69,472 pixels
As proposed method can hide three digits (12 bit) in each $2 x 2$ block of cover image
$17,69,472 / 4=4,42,386$ total $2 x 2$ blocks available
And each block can hide 12 bits hence 4,42,386 x 12
$=53,08,632$ bits can be hidden in interpolated image
size of $256 \times 256 \times 3 \times 3 \times 3$ pixels and each pixel is of 8bit hence $256 \times 256 \times 3 \times 3 \times 3 \times 8=1,41,55,776$ bits in interpolated image.
ВРР $=53,08,632 \times 8 / 141,55,776=3.000122$
Hence the maximum BPP observed for the proposed method is 3.000122 .

Number of bits	PSNR	MSE $\times \mathbf{1 0}^{\mathbf{- 1 1}}$
$\mathbf{2 0 0 0}$	54.53	5.41
$\mathbf{4 0 0 0}$	53.47	6.91
$\mathbf{8 0 0 0}$	53.01	7.68
$\mathbf{1 6 0 0 0}$	52.15	9.37
$\mathbf{3 2 0 0 0}$	50.95	12.37
$\mathbf{6 4 0 0 0}$	49.84	15.95
$\mathbf{1 2 8 0 0 0}$	48.83	20.13

Table 1 PSNR observation for various size of data

Figure 6 PSNR measured for different numbers of bits

3.1 COMPARATIVE RESULTS

PSNR Results observed for the 512x512 Lena Standard image			
2000 bits of data	1,20,000 bits of data		
Chang- Tsun Li et al [13]	Proposed Work	Thai-Son Nguyen et al [2]	Proposed Work
46.25	54.53	48.67	48.83

Table 2 PSNR Comparison with available work

Sr. NO.	AUTHOR	Results
$\mathbf{1 .}$	Fan Li et al [3]	PSNR observed is 52.99 when BPP taken as 0.063 for $512 x 512$ Lena image
2.	Chin-Chen Chang et al [1]	2.23 bpp hidden in Lena Image obtain PSNR of 26.86
3.	Proposed work	PSNR is 32.33 for 3.000122 BPP hidden in Lena image of $512 x 512 ~ p i x e l s ~$

Table 3 BPP Comparison with available work
From the comparative results it can be observed that proposed work PSNR is better than available works and also the proposed work can hide more bits per pixel than available work.

IV-CONCLUSION

The original objective for paper work was to develop an optimized technique for hiding data inside cover image also to reduce amount for data in the channel while stenograph data transmission which has been achieved. A new 8 digit decimal number based unique Sudoku developed for enhancing the robustness of the work and also a modified
interpolation is been developed for maintaining good quality of image after hiding the data. Problem with steganography is that it needs lots of data (image) for sending few small amount for data, so proposed work is a good solution for this problem it can be confidently said that, because we have achieved very good PSNR. Proposed design can also be used for secure communication in cloud services. The data bits are embedded in random into the cover-image pixels, instead of it sequential embedding can be done to improve the security of the system in future.

REFERENCES

[1] C. C. Chang, T. S. Nguyen, Y. Liu, A reversible data hiding scheme for image interpolation based on reference matrix, 2017 5th International Workshop on Biometrics and Forensics (IWBF) , DOI: 10.1109/IWBF.2017.7935098, Coventry, UK IEEE Xplore: 29 May 2017
[2] T. S. Nguyen , C. C. Chang, A reversible data hiding scheme based on the Sudoku technique, http://dx.doi.org/10.1016/j.displa.2015. 10.003-0141-9382/2015 Elsevier, Science Direct Displays 39 (2015) 109-116
[3] F. Li, Q. Mao, and C. C. Chang, A Reversible Data Hiding Scheme Based on IWT and the Sudoku Method, International Journal of Network Security, Vol.18, No.3, PP.410-419, May 2016410
[4] S. Chakraborty, Prof. S. K. Bandyopadhyay, Steganography Method Based On Data Embedding By Sudoku Solution Matrix, International Journal of Engineering Science Invention ISSN (Online): 2319 - 6734, ISSN (Print): 2319 - 6726 www.ijesi.org Volume 2 Issue 7, July 2013, PP.36-42
[5] R. N. Louise, Creating Sudoku Puzzles, Control \# 2883, February 19, 2008 Page 1 of 15 Control \# 2883,
math.swansea.ac.uk/staff/jhg/papers/MCM2008-Ruth-Nick-Louise.pdf
[6] S. Ijeri, S. Pujeri, S. B. Usha, Image Steganography using Sudoku Puzzle for Secured Data Transmission, International Journal of

Computer Applications (0975-888) Volume 48No.17, June 201231
[7] The Duc Kieu, Zhi-Hui Wang, Chin-Chen Chang, and Ming-Chu Li, A Sudoku Based Wet Paper Hiding Scheme, International Journal of Smart Home, Vol.3, No.2, April, 2009
[8] Ayushi, A Symmetric Key Cryptographic Algorithm, 2010 International Journal of Computer Applications (0975-8887), Volume 1 - No. 15
[9] S. Dixit, A. Gaikwad, S. Gaikwad, S. A. Shanwad, Public Key Cryptography Based Lossless and Reversible Data Hiding in Encrypted Images, Volume 6 Issue No. 4 DOI 10.4010/2016.822, ISSN 23213361 © 2016 IJESC
[10] Y. T. Lin, C. M. Wang, W. S. Chen, F. P. Lin, and W. Lin, Novel Data Hiding Algorithm for High Dynamic Range Images, IEEE TRANSACTIONS ON MULTIMEDIA, VOL. 19, NO. 1, JANUARY 2017
[11] A. A. Haj, H. A. Nabi, Digital Image Security Based on Data Hiding and Cryptography, 2017 3rd International Conference on Information Management, 978-1-5090-6306-2/17/2017 IEEE
[12] S. Rawal, Advanced Encryption Standard (AES) and It's Working, International Research Journal of Engineering and Technology (IRJET) eISSN: 2395 -0056 Volume: 03 Issue: 08 | Aug-2016
[13] C. C. Chang, C. T. Li, Reversible Data Hiding in JPEG Images Based on Adjustable Padding, 2017 5th International Workshop on Biometrics and Forensics (IWBF), DOI: 10.1109/IWBF.2017.7935083, IEEE Xplore: 29 May 2017
[14] D. Maglott, J. Ostell, K. D. Pruitt and T. Tatusova, Entrez Gene: gene-centered information at NCBI, D52-D57 Nucleic Acids Research, 2011, Vol. 39, Database issue Published online 28 November 2010, doi:10.1093/nar/gkq1237
[15] A. K. Maji, S. Roy, R. K. Pal, A Novel Algorithmic approach for solving Sudoku puzzle in

Guessed Free Manner, EUROPEAN ACADEMIC RESEARCH, VOL. I, ISSUE 6/ SEPEMBER 2013 ISSN 2286-4822
[16] A. U. Islam, F. Khalid, M. Shah, Z. Khan, T. Mahmood, A. Khan, U. Ali, M. Naeem, An Improved Image Steganography Technique based on MSB using Bit Differencing, INTECH 2016, 978-1-5090-2000-3/16/2016 IEEE
[17] M. Wilhelm, I. Martinovic, E. Uzun, and J. B. Schmitt, SUDOKU: Secure and Usable Deployment of Keys on Wireless Sensors, INCCON 2010, 978-1-4244-8915-2/10/2010 IEEE
[18] B. S. Xiwei, S. Y. WU Yilong, Y. G. YANG, A New Algorithm for Generating Unique-solution Sudoku, Fourth International Conference on Natural Computation, 978-0-7695-3304-9/08-2008 IEEE, DOI: 10.1109/ICNC.2008.788
[19] M. Iwata, K. Miyake, A. Shiozaki, Digital steganography utilizing features of JPEG images, IEICE Trans. Fundam. Electron. Commun. Comput. Sci. E87-A(2004) 929-936.
[20] J. Mielikainen, LSB matching revisited, IEEE Signal Process. Lett. 13 (2006) 285-287.
[21] I. J. Cox, J. Kilian, F. T. Leighton, T. Shamoon, Secure spread spectrum watermarking for multimedia, IEEE Trans. Image Process. 6 (1997) 1673-1687.
[22] J. Tian, Reversible data hiding using difference expansion, IEEE Trans. Circuits Syst. Video Technol. 13 (2003) 890-896.
[23] D. M. Thodi, J. J. Rodriguez, Expansion embedding techniques for reversible watermarking, IEEE Trans. Image Process. 16 (2007) 721-730.
[24] Z. Ni, Y.Q. Shi, N. Ansari, W. Su, Reversible data hiding, IEEE Trans. Circuits Syst. Video Technol. 16 (2006) 354-362.
[25] H. Luo, F. X. Yu, H. Chen, Z. L. Huang, H. Li, P. H. Wang, Reversible data hiding based on block median preservation, Inf. Sci. 181 (2011) 308-328.
[26] Y. C. Li, C. M. Yeh, C. C. Chang, Data hiding based on the similarity between neighboring pixels with reversibility, Digital Signal Process. 20 (2010).
[27] A. B. Almuhrij, SUDOKU GAME, Dr. David Lester, 2011, University of Manchester

